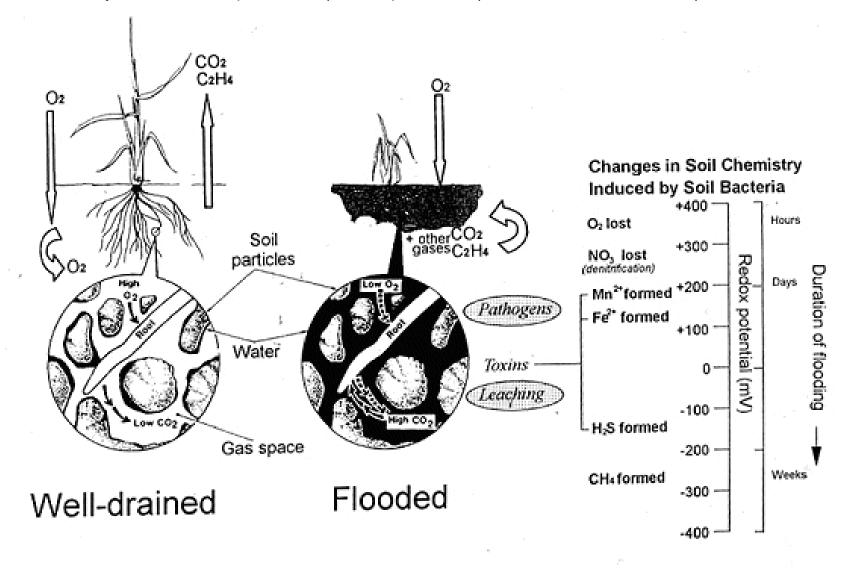


John Heard
Gittin' It Right
Crop Production Meeting
January 2020


Manitoba 🗫

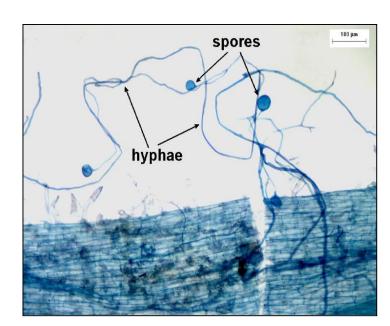
Topics/Concerns

- Microbial survival (Rhizobium):
 - established populations or virgin ground
- IDC and salinity
- Fertilizer applications
- Ruts and compaction
- Crop residue and tillage
- Residual fertility of unharvested crops

Fig. 2. Effect of flooding on (i) the displacement and exclusion of aerial oxygen from the soil, entrapment of metabolically generated gases in the soil and (ii) the consequences, over time, of bacterial respiration for soil redox potential, loss of free nitrate and subsequent generation of chemically reduced end-products. (Developed from (Setter and Belford, 1990)

Flooded soil on soil chemistry - fertility

- 1. Nitrate lost to N₂O or N₂ gas
- Rate on saturated cold soils is 2-4 lb N/ac/day
- Some nitrate may have leached in sandy soils
- 2. Mn and Fe increase in availability
- 3. Free lime + saturated soil = bicarbonate and interferes with Fe uptake leading to IDC


4.Inflates soil test P

Flooded soil on soil biology

- Well known "flooded or fallow" soil syndrome
- Due to collapse of mycorrhizae populations when land not cropped to host plants
- Eg corn and flax after canola

Not the case with a wet fall

Stuttgard – Arkansas State Soil

- "Grow soybeans after flooded rice, followed by flooding for duck hunting and saturated soil most of winter"
- "Inoculate seed only 20% of the time."
- "No problems"

K. Nixon

Granular plus liquid Liquid inoculant only inoculant First year soybeans Photo: Mark Keating, Russell, MB

Do you still need granular or in-furrow liquid on "experienced fields"?

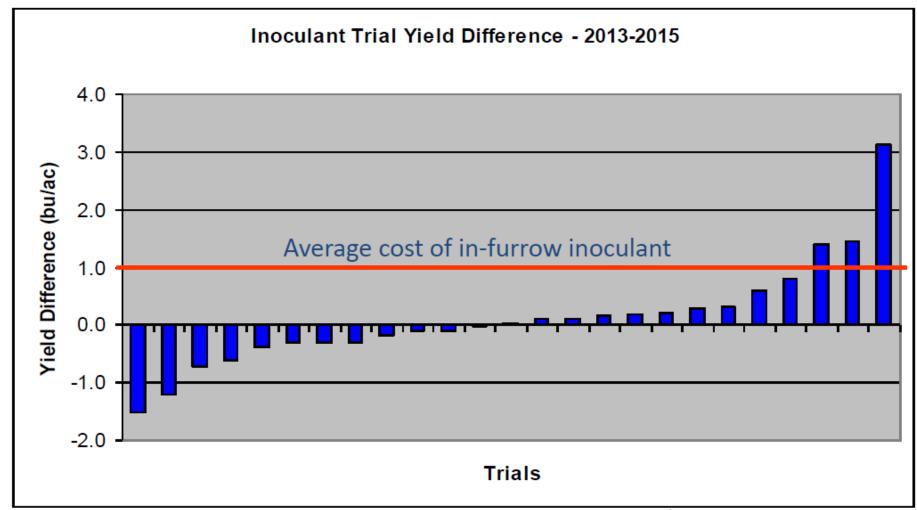
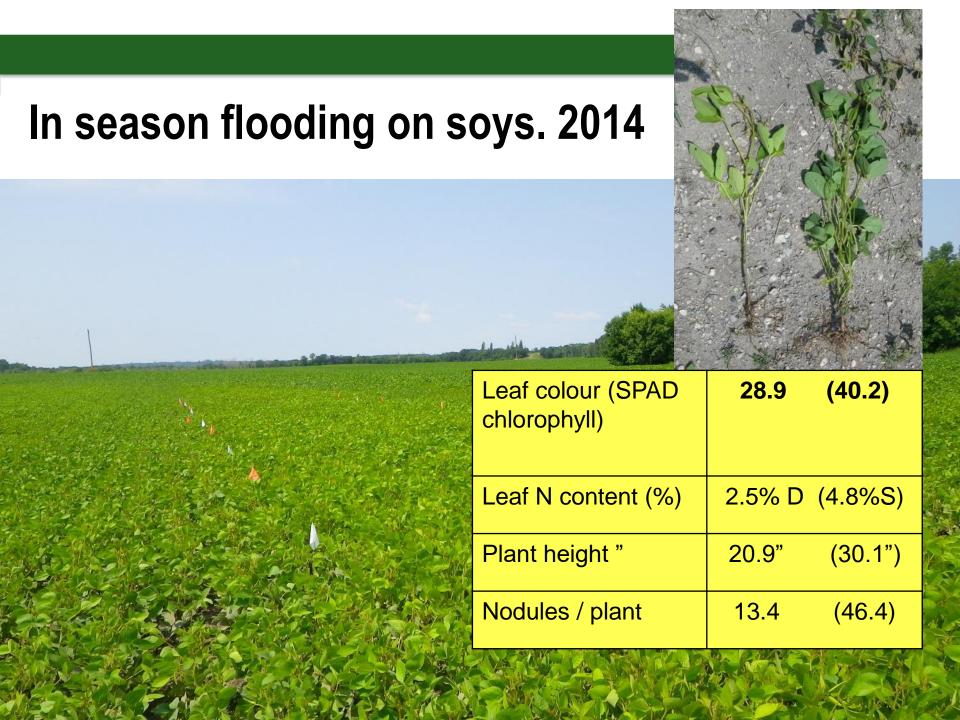
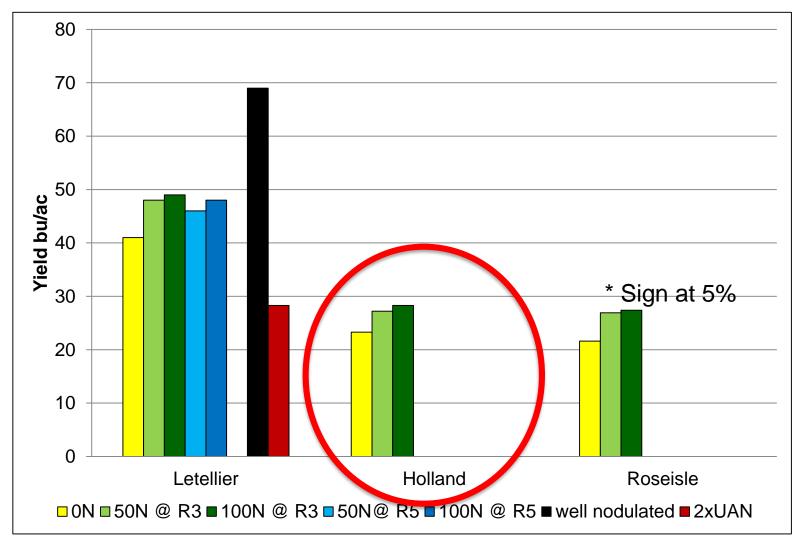




Figure 4 - Inoculant Trial Yield Difference 2013-2015

Soybean yield response to rescue N applications.

Yield Impact of Yellow Soybeans and Management Strategies Kristen P. MacMillan, MSc, PAg, Research Agronomist, University of Manitoba

in Pulse Beat: Summer 2018

Soil Analysis by Agvise Laboratories (http://www.agvise.com) Northwood: (701) 587-6010 Benson: (320) 843-4109

SUBMITTED FOR:

JOHN HEARD

SOIL TEST REPORT

FIELD ID SAMPLE ID FIELD NAME COUNTY

SECTION

TWP RANGE

QTR PREV. CROP Canola-bu

SUBMITTED BY: LE0002

ACRES 0

JOHN HEARD MB AG 65 3RD AVE NE

CARMAN, MB ROG 030 S

17499669 BOX # REF #

NW1521 LAB #

Date Sampled Date Received 01/23/2015 Date Reported 1/26/2015

Nutrient In	The Soil	In	terp	retat	ion	16	t Cro	p Chok	•	2n	d Cro	p Choice	1	3	rd Cro	p Cho	ice
		V.ou	Low	Hed	High		Soyt	beans			Soyb	eans			Soy	beans	
0-6" 6-24"	9 lb/ac 15 lb/ac						YIELD	GOAL			YTELD	GOAL			YTEL	D GOAL	
		•••••					40	BU			40	BU			40	BU	
0-24"	24 lb/sc					SUGG	ESTED	GUEDELIN	es	SUGG	ESTED	GUIDELINE	s	SUG	GESTE	o GUIDE	LINES
itrate						Band		Band/Maint.			Broadcast						
Olean	8 ppm					LB/A	CRE	APPLICA	TION	LB/A	CRE	APPLICAT	ION	LB/	ACRE	APPLI	CATIC
Phosphorus	- ppm					N	•••			N	•••			N	•••		
otassium	109 ppm	*****	*****	****		PaOs	32	Band	•	PaOs	35	Band *		P2Os	54	Broad	dcast
0-24"	76 lb/ac	•••••	•••••		•••••	K2O	26	Band	•	K20	60	Band *		K20	53	Broad	dcast
0-6"	44 lb/ac					CI	0			CI	0			CI	0		
6-24"	360 +lb/ac	*****	*****	*****	******	s	0			s	0			s	0		
koron	1.2 ppm	•••••			_	В	0			В	0			В	0	Т	
finc	1.03 ppm	*****			-	Zn	0			Zn	0			Zn	0		
non	13.7 ppm		*****	*****		Fe	0			Fe	0			Fe	0		
Hanganese	2.0 ppm		*****	*****		Mn	0			Mn	0			Mn	0	\top	
copper tagnesium	0.27 ppm 506 ppm					Cu	1	Band		Cu	1	Band	\neg	Cu	2	Broad	dcast
Calcium	3921 ppm					Mg	0			Mg	0		\dashv	Mg	0	\top	
Sodium	21.000					Ume				Lime			\neg	Lime		\top	
on an	2.0 %								Cati	on Excl	Name .	% Bas	e Sa	turatio	on (Tv	pical Rar	noe)
arbonate(CCE)	4.5 %					Soll	#H B	uffer pH		Capacit		% Ca		Mg	% K	% Na	%
0-6"	0.27 mmho/cm					6* 7				24.2 me		(65-75)		20)	(1-7)	(0-5)	(9-1

Soil testitoba report

WENTED 2007

eral Comments: Soil Texture: Sand: 83.0 % Silt: 8.0 % Clay: 9.0 % JSDA Textural class: Loamy Sand .

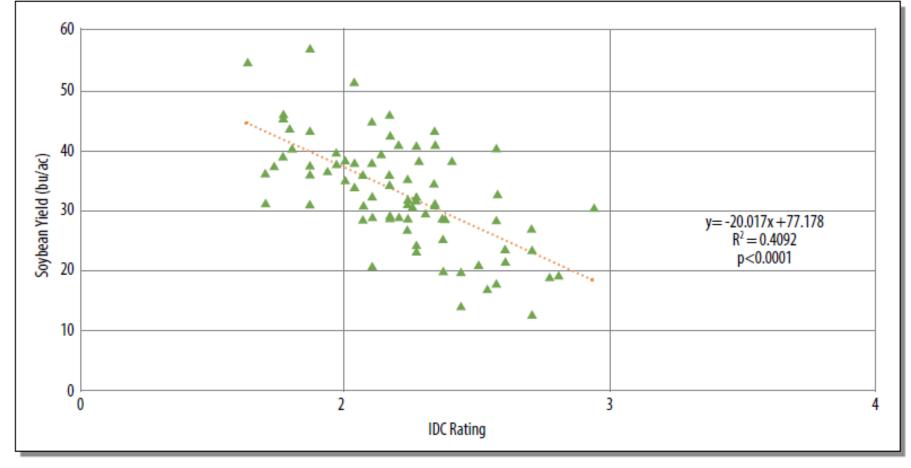
Iron Deficiency Chlorosis Risk Factors

Soluble salts	Car	bonate level Co	CE%
(mmhos/cm)	0-2.5	2.6-5	>5
0-0.25	Low	Low	Moderate
0.26-0.50	Low	Moderate	High
0.51-1.0	Moderate	High	Very High
>1.0	High	Very High	Extreme

Under wet/saturated soil conditions
Compounded by high soil nitrate, herbicide stress, compaction

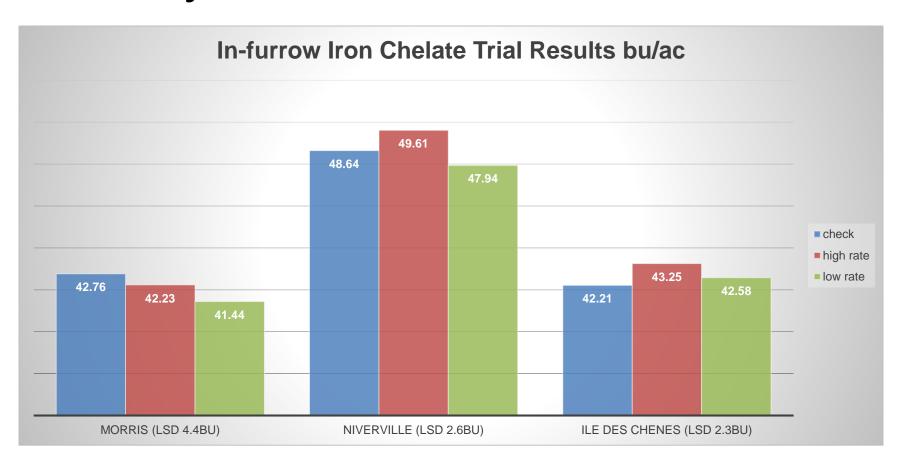
CCE – presence of 'free lime"

- Fe-chlorosis or limeinduced chlorosis
- alkaline soils (pH > 7.4), high in free lime
- poorly drained and higher salinity areas.
- Limits soluble form of iron taken up by plants
- Managed through field and variety selection, drainage
- Compounded by N application

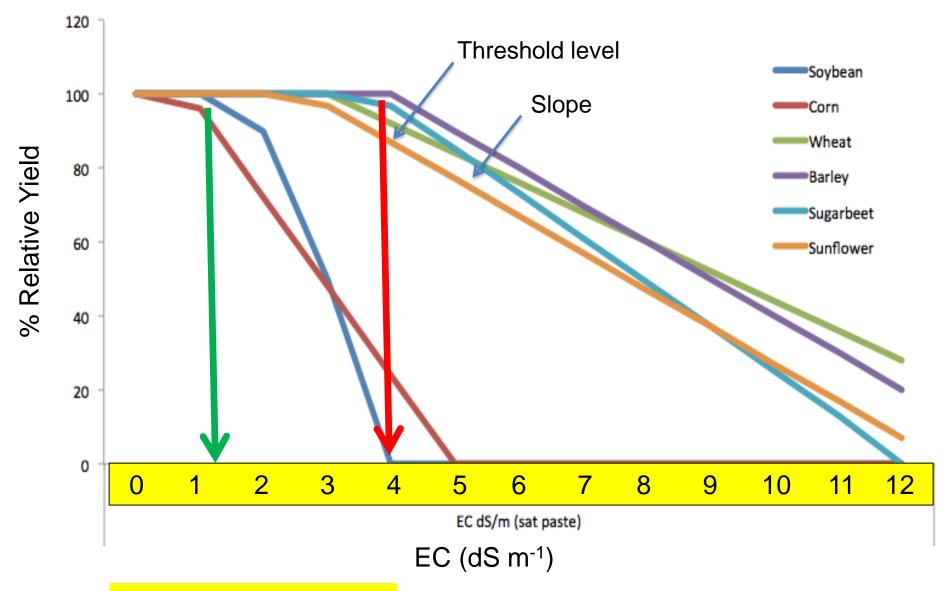


Yield Impact of Yellow Soybeans and Management Strategies

Kristen P. MacMillan, MSc, PAg, Research Agronomist, University of Manitoba

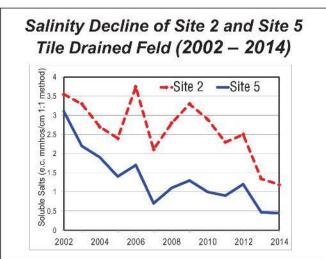

▼ Figure 5b. Soybean yield decrease with increasing IDC rating as collected from the 2017 IDC trial.

SoyGreen Evaluation for Prevention of Iron Deficiency Chlorosis. Antara Research


- Improve drainage, manage salinity
- Grow IDC tolerant varieties
- In furrow application of ortho-ortho-EDDHA Fe chelate (3 lb/ac dissolved in water)
- Biologically "dewater soil"
 - Plant in 15" or wider rows so there are more seeds per ft of row
 - Increase seeding rates
 - Seed a 1 bu/ac oat cover crop and spray out later

Salinity Effects on Crops

Commercial lab approximation

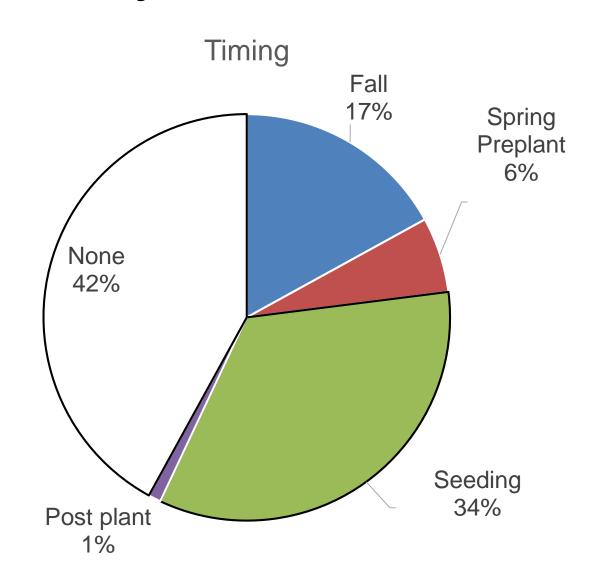

Soybeans are sensitive also

Waiting for salts to flush out of tiles? You need surplus water!

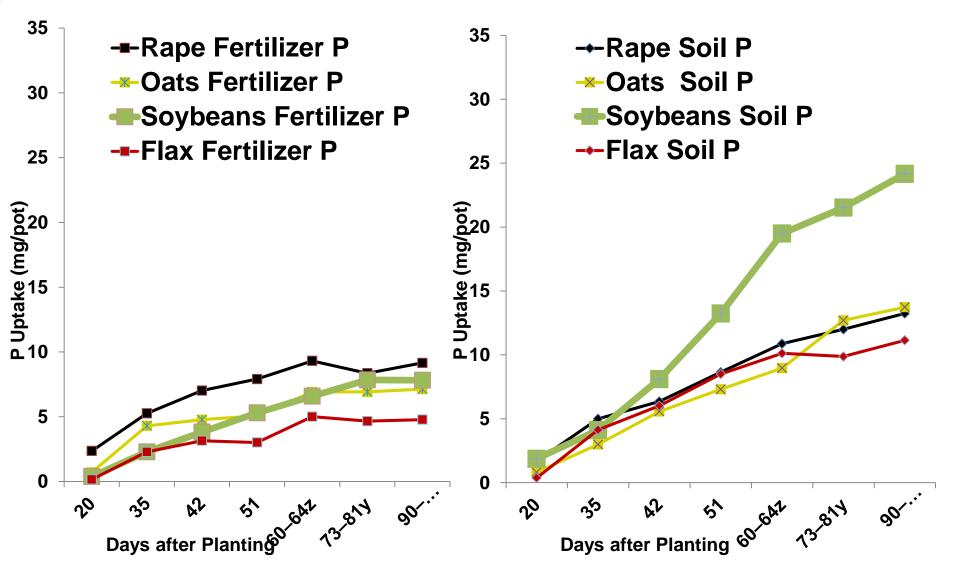
AgVise Tile project

Salinity in 2020

- Wet fall will likely have flushed salts deeper into the profile
- Will take some dry conditions for us to draw them back to the surface through tillage, etc.
- Or leave them there



Soybean Crop Fertility


Table 2. Phosphorus fertilizer placement and timing in Manitoba for spring wheat, canola, soybeans and corn (STRATUS Research).

Practice	Wheat	Canola	Soybeans	Grain corn
	(% of acres	or volume ap	plied
PLACEMENT				
Broadcast, no	0	1	2	5
incorporation				
Broadcast and	3	9	14	35
incorporated				
Preplant banded	7	3	6	21
Sidebanded	23	13	13	19
Mid row banded	14	11	6	3
Seed placed	54	62	11	32
In crop applied	1	0	1	0
TIMING				
Fall	6	2	17	23
Spring, preplant	3	5	6	34
At seeding	91	92	34	55
Post seeding, in crop	0	0	1	0

Fertilizer P for soybeans in MB

Soybeans are efficient feeders for soil P

(Kalra and Soper 1968)

What about P?

1	Phosphorus Balan	ce Calcu	lation fo	or a Rota	tion		
		Typical	Р	P Re	moved	Annual	
2	Crop	Yield	Applie	per bu	per acre	Balance	
3		(bu/ac)		(lb P	2O ₅ /ac)		N
4	HR Spring wheat	60	30	0.59	35	-5	D
5	Winter wheat	75	30	0.51	38	-8	w
6	Barley			0.43	0	0	
7	Oats			0.26	0	0	
8	Canola	54	20	1.00	54	-34	
9	Soybeans	30	10	0.85	26	-16	
10	Peas			0.68	0	0	
11	Flax			0.65	0	0	
12	Corn (grain)			0.44	0	0	
13	Total for Rotation	ı	90		153	-63	
14							
15	Fill in any of the b	lue cells	for typi	cal rotat	ion, yields	and P ap	pl'r
16							

In crop. 2%

Seed place 21%

Bcst & Incorp 26%

Midrow band 11%

SFG Seedplaced P

Table 12. Maximum safe rates of actual seed-placed phosphate (P₂O₅) fertilizer as monoammonium phosphate¹.

Crop	Actual P ₂ O ₅ (lb/ac) [‡]
Cereals	50
Canola*, peas*, fababeans, buckwheat, flax ³³	20
Dry beans ³⁴ , soybeans (narrow rows**)	10
Dry beans, soybeans (wide rows**)	0

- Divide values in table by 0.51 or multiply by 1.96 to calculate lb of 12-51-0 per acre.
- * Rates are based on disk or knife openers with a 1" spread, 6 to 7" row spacing and good to excellent soil moisture.
- When P soil test values are medium to high, no phosphorus should be placed with canola or pea seed.
- " A low rate of seed-placed phosphorus is safe for beans and soybeans when seeded in row widths of 15" or less. Similar rates may cause unacceptable stand reductions in wider rows.

Beausejour Clay – 8 ppm Olsen P

MelitaLoamy Sandy – 3 ppm Olsen P

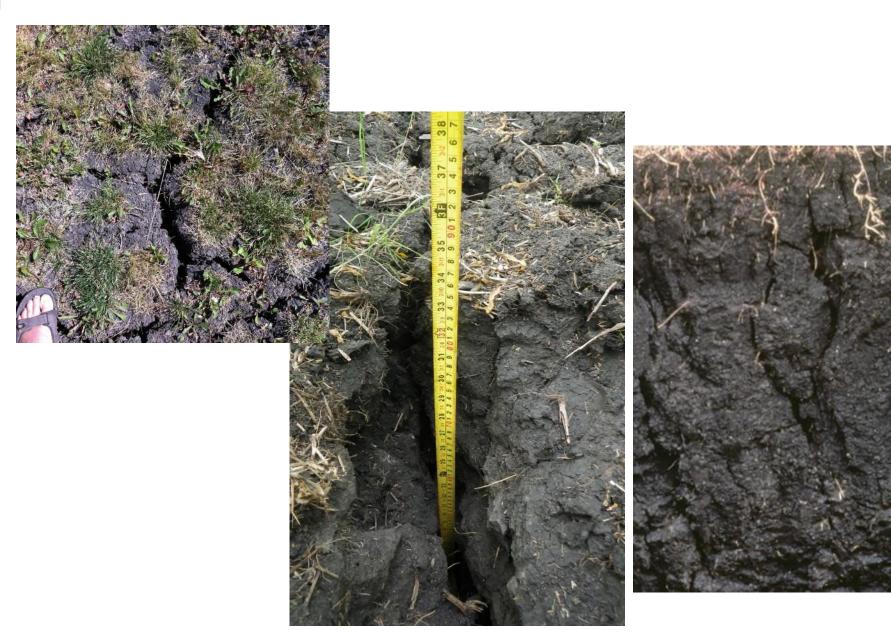
Row crop application of liquid fertilizer


Risk factors:
Soil texture
Wide row spacing

2020 Logistics: Just in time delivery? Or on-farm storage

Fertilization Challenges for 2020

- Fall **2019**
 - Late narvest; little tillage or NH₃ application



- Spring 20 20 20
 - Mud & ruts are still there; N fertilizer still isn't
 - Low soil test N; high fertilizer costs
 - **Dealer logistics**

Wetting/drying effect on soil

Got Residue?

Up in smoke:

- 95% of the C
- 98% of the N
- 75% of the S
- 24% of the P
- 35% of the K

How much tillage is needed to manage ruts and incorporate fertilizer?

Is vertical till or heavy harrowing enough?

Field Cultivator

Traditional spring tillage

3-4" Depth

Even mixing of soil

Good fertilizer and herbicide incorporation

DeJong-Hughes. 2013 MAC

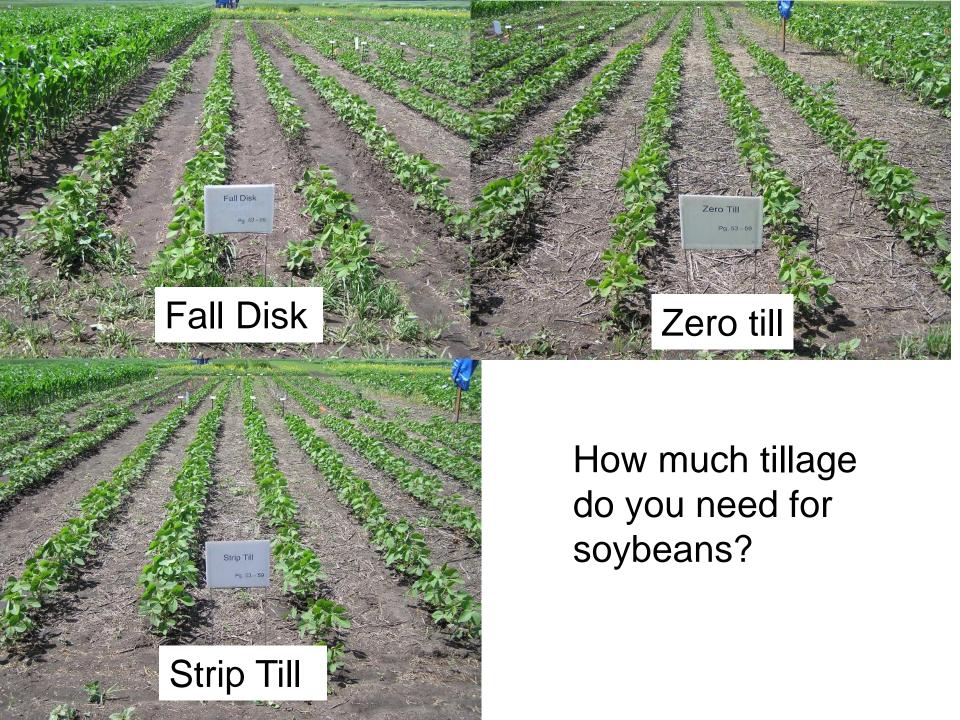
Vertical tillage

Speed - 7 to 10 mph

Broadcast urea incorporation with 1 and 2 passes Vertical Till (Crop Diagnostic School 2014)

Application	Surface residue	N prills at surface	NH ₃ loss ppm*
Surface N	93%	100%	300
Vertical till 1X	74%	20%	25
Vertical till 2X	54%	14%	25

^{*} In 3 days before rainfall.


Strip till allows fertilizer banding

B. Pritchard, 2019

Fertility Value of Unharvested Crops

- Hailed soybeans
- Unharvested dry beans
- Unharvested potatoes (12K acres)

Soil Fertility Value of Immature Crops Returned to the Soil

◆back

Some agronomists are being asked to supply information to growers as to the fertility value of late seeded or long-season crops that may freeze before maturity. These crops may be worked into the soil as an unintentional green manure. What are the fertility implications for fall soil testing and planning the fertility needs for the 2005 crop?

Green manures are typically crops that are worked into the soil during maximum vegetative growth. A major objective is to increase organic matter of the soil to improve soil physical properties. In the case of legume or pulse crops, the return of nitrogen (N) may be considerable.

Three different approaches to estimate or predict N contributions:

1) Estimates calculated from expected N uptake of crops

Typical nitrogen uptake by the above-ground portion of crops at maturity.

			Total DM biomass	Total C**	Total N ***	N contribution base on release values of		
Crop	Yield potential (if mature)	Harvest index*	lb/ac	lb/ac	lb/ac	C:N Ratio	30%	50%
Corn	100 bu/ac	50 %	11200	4480	156	29:1	47	78
Sunflower	2000 lb/ac	40 %	5000	2000	74	27:1	22	37
Canola	35 bu/ac	45 %	3900	1560	108	14:1	32	54
Soybeans	30 bu/ac	50 %	3600	1440	168	9:1	50	84
Dry beans	1500 lb/ac	40 %	3750	1500	93	16:1	28	47

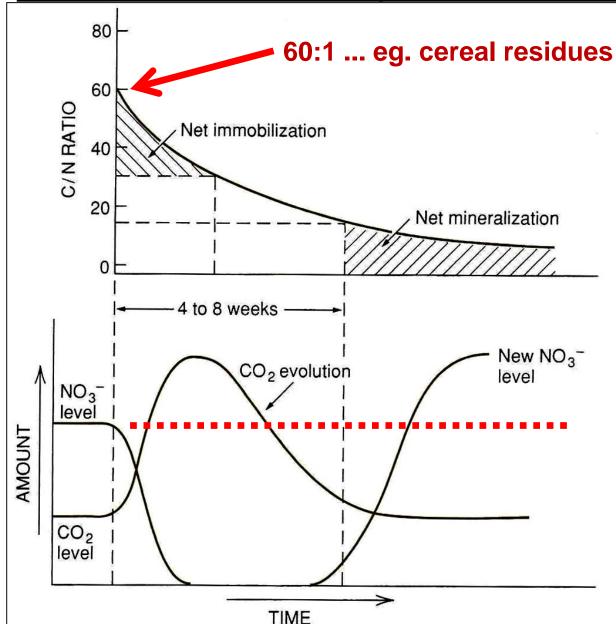
^{*}Harvest index is that percentage of total DM that is grain at full maturity. Values are from various research papers.

^{**}Total C is carbon content, estimated to be 40% of DM based on past analysis of cereal straw

^{***}Total N is total crop uptake adapted from the MB Soil Fertility Guide or Ontario Soil Fertility handbook.

Table 1. Plant nutrient equivalent content of dry beans, soybeans and potato tubers

Heard & Hay, 2006 MAC


Crop	C:N Ratio	Total N content	Total P ₂ O ₅ equivalent	Total K ₂ O equivalent
Dry beans	13:1	3.5 lb/cwt	1.1 lb /cwt	1.9 lb /cwt
Soybeans	8.3:1	3.8 lb/bu	1.2 lb/bu	1.2 lb/bu
Potatoes	37:1	32 lb/100 cwt	16 lb/100 cwt	60 lb/100 cwt

If C:N < 20:1 mineralization = "release of N"

If C:N > 20-30:1 immobilization = "N is tied up"

Mineralization eventually follows after immobilization:

Figure 4-26

General description of N mineralization and immobilization following addition of residue to soil.

(Adapted from B. R. Sabey, Univ. of Illinois.)

37:1 potatoes

13:1 beans

8:1 soys

(Soil Fertility and Fertilizers 2014)

Table 2. Estimated nutrient availability to 2020 crops from unharvested dry bean, soybean or potatoes.

Crop and	Available N	Available P ₂ O ₅	Available K ₂ O	
estimated yield	Lb/ac			
Dry beans	70	18	34	
20 cwt/ac				
Soybeans	114	29	32	
30 bu/ac				
Potatoes	29 @ 30% available	38	162	
300 cwt/ac	48 @ 50% available			

Modest to high N contribution.

P&K contribution is NOT "starter", but consider as soil or maintenance supply.

Saturated Soil Summary

- Established fields Soil bugs will take care of themselves.
 Use on-seed inoculant
- 1st time soils, granular inoculant offers protection
- Scout nodulation
- IDC varieties, drainage, soil test, targeted SoyGreen?
- Salinity
- Fertility stress of Placement & Timing for other crops
- Limit seed placement.
- Match P removals when able.
- Ruts till them out
- Modest-high residual N from failed 2019 crops

Fall 2019 is behind us. Safari On!

John.Heard@gov.mb.ca 204 745-8093